Adaptive-IPP with Non-Point FoV¶
In [ ]:
Copied!
import os
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
import numpy as np
from sgptools.utils.metrics import *
from sgptools.utils.data import *
from sgptools.utils.misc import *
from sgptools.models.core.osgpr import *
from sgptools.utils.tsp import run_tsp
from sgptools.utils.gpflow import get_model_params
from sgptools.models.continuous_sgp import *
from sgptools.models.core.transformations import *
from gpflow.utilities.traversal import print_summary
from matplotlib import colors
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
import mpl_toolkits.mplot3d.art3d as art3d
from scipy.optimize import linear_sum_assignment
from sklearn.metrics import pairwise_distances
from time import time
from copy import deepcopy
np.random.seed(1234)
tf.random.set_seed(1234)
import os
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
import numpy as np
from sgptools.utils.metrics import *
from sgptools.utils.data import *
from sgptools.utils.misc import *
from sgptools.models.core.osgpr import *
from sgptools.utils.tsp import run_tsp
from sgptools.utils.gpflow import get_model_params
from sgptools.models.continuous_sgp import *
from sgptools.models.core.transformations import *
from gpflow.utilities.traversal import print_summary
from matplotlib import colors
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
import mpl_toolkits.mplot3d.art3d as art3d
from scipy.optimize import linear_sum_assignment
from sklearn.metrics import pairwise_distances
from time import time
from copy import deepcopy
np.random.seed(1234)
tf.random.set_seed(1234)
In [2]:
Copied!
'''
Utility to map the inducing points to FoV vertices
'''
def get_vertices(Xu, X_fov):
X_fov = X_fov.reshape(len(Xu), -1, 2)
vertices = np.zeros((len(Xu), 5, 2))
vertices[:, 0] = X_fov.min(axis=1)
vertices[:, 1] = np.array([X_fov[:, :, 0].min(axis=1),
X_fov[:, :, 1].max(axis=1)]).T
vertices[:, 2] = X_fov.max(axis=1)
vertices[:, 3] = np.array([X_fov[:, :, 0].max(axis=1),
X_fov[:, :, 1].min(axis=1)]).T
vertices[:, 4] = X_fov.mean(axis=1)
dists = pairwise_distances(vertices[:, 4], Y=Xu[:, :2],
metric='euclidean')
_, idx = linear_sum_assignment(dists)
vertices[:, 4] = Xu[idx][:, :2]
return vertices
'''
Method to plot the solution with FoVs and environment reconstruction
'''
def plot_results(X_inducing, X_fov, current_idx=0, fname=None):
# Setup 3D plot
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection='3d', computed_zorder=False)
current_idx += 1 # Increment by one for plotting
# Plot the reconstructed environment state
num_fov_pts = len(X_fov)//len(X_inducing)
sensor_data = cont2disc(X_fov[:num_fov_pts*(current_idx)], X, y)
y_pred, _ = get_reconstruction(sensor_data, X_test,
noise_variance_opt, kernel_opt)
norm = colors.Normalize(y_train.min(), y_train.max())
_ = ax.plot_surface(X_test[:, 0].reshape(test_dim),
X_test[:, 1].reshape(test_dim),
np.atleast_2d(-0.1),
facecolors=plt.cm.jet(norm(y_pred.reshape(test_dim))),
shade=False,
alpha=0.8,
zorder=0)
# Plot the solution path
ax.scatter(X_inducing[:current_idx, 0],
X_inducing[:current_idx, 1],
X_inducing[:current_idx, 2], c='C3')
ax.scatter(X_inducing[current_idx:, 0],
X_inducing[current_idx:, 1],
X_inducing[current_idx:, 2], c='C2')
ax.plot(X_inducing[:, 0], X_inducing[:, 1], X_inducing[:, 2], 'k-')
# Plot the FoV vertices
vertices = get_vertices(X_inducing, X_fov)
for i in range(vertices.shape[0]):
color = 'C3' if i < current_idx else 'C2'
verts = []
verts.append([vertices[i, 0], vertices[i, 1],
vertices[i, 2], vertices[i, 3]])
fov = Polygon(np.array(verts)[0, :, :2],
linewidth=1.5,
edgecolor=color,
facecolor=color,
fill=False,
zorder=15)
ax.add_patch(fov)
art3d.pathpatch_2d_to_3d(fov)
# Configure other plot settings
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_xlim(np.min(X[:, 0])-0.5, np.max(X[:, 0])+0.5)
ax.set_ylim(np.min(X[:, 1])-0.5, np.max(X[:, 1])+0.5)
ax.set_zlim(0, 14)
ax.view_init(elev=30, azim=45+180)
ax.set_title(f'Waypoint: {current_idx}, RMSE: {get_rmse(y_pred, y_test):.2f}\nData Field Reconstruction', y=0.99)
plt.tight_layout()
if fname is not None:
plt.savefig(fname, bbox_inches='tight')
plt.show()
'''
Utility to map the inducing points to FoV vertices
'''
def get_vertices(Xu, X_fov):
X_fov = X_fov.reshape(len(Xu), -1, 2)
vertices = np.zeros((len(Xu), 5, 2))
vertices[:, 0] = X_fov.min(axis=1)
vertices[:, 1] = np.array([X_fov[:, :, 0].min(axis=1),
X_fov[:, :, 1].max(axis=1)]).T
vertices[:, 2] = X_fov.max(axis=1)
vertices[:, 3] = np.array([X_fov[:, :, 0].max(axis=1),
X_fov[:, :, 1].min(axis=1)]).T
vertices[:, 4] = X_fov.mean(axis=1)
dists = pairwise_distances(vertices[:, 4], Y=Xu[:, :2],
metric='euclidean')
_, idx = linear_sum_assignment(dists)
vertices[:, 4] = Xu[idx][:, :2]
return vertices
'''
Method to plot the solution with FoVs and environment reconstruction
'''
def plot_results(X_inducing, X_fov, current_idx=0, fname=None):
# Setup 3D plot
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection='3d', computed_zorder=False)
current_idx += 1 # Increment by one for plotting
# Plot the reconstructed environment state
num_fov_pts = len(X_fov)//len(X_inducing)
sensor_data = cont2disc(X_fov[:num_fov_pts*(current_idx)], X, y)
y_pred, _ = get_reconstruction(sensor_data, X_test,
noise_variance_opt, kernel_opt)
norm = colors.Normalize(y_train.min(), y_train.max())
_ = ax.plot_surface(X_test[:, 0].reshape(test_dim),
X_test[:, 1].reshape(test_dim),
np.atleast_2d(-0.1),
facecolors=plt.cm.jet(norm(y_pred.reshape(test_dim))),
shade=False,
alpha=0.8,
zorder=0)
# Plot the solution path
ax.scatter(X_inducing[:current_idx, 0],
X_inducing[:current_idx, 1],
X_inducing[:current_idx, 2], c='C3')
ax.scatter(X_inducing[current_idx:, 0],
X_inducing[current_idx:, 1],
X_inducing[current_idx:, 2], c='C2')
ax.plot(X_inducing[:, 0], X_inducing[:, 1], X_inducing[:, 2], 'k-')
# Plot the FoV vertices
vertices = get_vertices(X_inducing, X_fov)
for i in range(vertices.shape[0]):
color = 'C3' if i < current_idx else 'C2'
verts = []
verts.append([vertices[i, 0], vertices[i, 1],
vertices[i, 2], vertices[i, 3]])
fov = Polygon(np.array(verts)[0, :, :2],
linewidth=1.5,
edgecolor=color,
facecolor=color,
fill=False,
zorder=15)
ax.add_patch(fov)
art3d.pathpatch_2d_to_3d(fov)
# Configure other plot settings
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_xlim(np.min(X[:, 0])-0.5, np.max(X[:, 0])+0.5)
ax.set_ylim(np.min(X[:, 1])-0.5, np.max(X[:, 1])+0.5)
ax.set_zlim(0, 14)
ax.view_init(elev=30, azim=45+180)
ax.set_title(f'Waypoint: {current_idx}, RMSE: {get_rmse(y_pred, y_test):.2f}\nData Field Reconstruction', y=0.99)
plt.tight_layout()
if fname is not None:
plt.savefig(fname, bbox_inches='tight')
plt.show()
In [3]:
Copied!
'''
Method to run AIPP using the SGP-based approach
'''
def run_aipp(X_train, ipp_model, Xu_init, path2data):
total_time_param = 0
total_time_ipp = 0
num_robots = Xu_init.shape[0]
num_waypoints = Xu_init.shape[1]
curr_sol = Xu_init
plot_results(ipp_model.transform.expand(curr_sol.reshape(-1, 3),
expand_sensor_model=False).numpy(),
ipp_model.transform.expand(curr_sol.reshape(-1, 3)).numpy())
# Initialize the hyperparameters and SSGP
init_kernel = deepcopy(ipp_model.kernel)
init_noise_variance = ipp_model.likelihood.variance
param_model = init_osgpr(X_train,
num_inducing=40,
kernel=init_kernel,
noise_variance=init_noise_variance)
sol_data_X = []
sol_data_y = []
for time_step in range(num_waypoints):
# Get a new batch of data from the last visited waypoint
last_visited = curr_sol[:, time_step].copy()
# Apply the sensor model expansion with fixed points IPP expansion
data_pts = ipp_model.transform.sensor_model.expand(last_visited).numpy()
data_X_batch, data_y_batch = path2data(data_pts)
sol_data_X.extend(data_X_batch)
sol_data_y.extend(data_y_batch)
# Skip param and path update for the last waypoint
if time_step == num_waypoints-1:
break
# Update the SSGP hyperparameter model
param_model.update((np.array(data_X_batch),
np.array(data_y_batch)),
update_inducing=False)
# Train only the kernel parameters and noise variance.
# Keeping the SSGP inducing points fixed results in better
# hyperparameter estimation
start_time = time()
optimize_model(param_model,
trainable_variables=param_model.trainable_variables[1:],
optimizer='scipy',
method='CG')
end_time = time()
total_time_param += end_time - start_time
print_summary(param_model.kernel)
# Update the SGP-IPP model
Xu_visited = curr_sol.copy()[:, :time_step+1]
ipp_model.transform.update_Xu_fixed(Xu_visited)
ipp_model.update(param_model.likelihood.variance,
param_model.kernel)
start_time = time()
_ = optimize_model(ipp_model,
kernel_grad=False,
optimizer='scipy',
method='CG')
end_time = time()
total_time_ipp += end_time - start_time
curr_sol = ipp_model.inducing_variable.Z
curr_sol = ipp_model.transform.expand(curr_sol,
expand_sensor_model=False).numpy()
curr_sol = curr_sol.reshape(num_robots, num_waypoints, 3)
plot_results(ipp_model.transform.expand(curr_sol.reshape(-1, 3),
expand_sensor_model=False).numpy(),
ipp_model.transform.expand(curr_sol.reshape(-1, 3)).numpy(),
time_step+1)
return np.array(sol_data_X), np.array(sol_data_y), total_time_param, total_time_ipp
'''
Method to run AIPP using the SGP-based approach
'''
def run_aipp(X_train, ipp_model, Xu_init, path2data):
total_time_param = 0
total_time_ipp = 0
num_robots = Xu_init.shape[0]
num_waypoints = Xu_init.shape[1]
curr_sol = Xu_init
plot_results(ipp_model.transform.expand(curr_sol.reshape(-1, 3),
expand_sensor_model=False).numpy(),
ipp_model.transform.expand(curr_sol.reshape(-1, 3)).numpy())
# Initialize the hyperparameters and SSGP
init_kernel = deepcopy(ipp_model.kernel)
init_noise_variance = ipp_model.likelihood.variance
param_model = init_osgpr(X_train,
num_inducing=40,
kernel=init_kernel,
noise_variance=init_noise_variance)
sol_data_X = []
sol_data_y = []
for time_step in range(num_waypoints):
# Get a new batch of data from the last visited waypoint
last_visited = curr_sol[:, time_step].copy()
# Apply the sensor model expansion with fixed points IPP expansion
data_pts = ipp_model.transform.sensor_model.expand(last_visited).numpy()
data_X_batch, data_y_batch = path2data(data_pts)
sol_data_X.extend(data_X_batch)
sol_data_y.extend(data_y_batch)
# Skip param and path update for the last waypoint
if time_step == num_waypoints-1:
break
# Update the SSGP hyperparameter model
param_model.update((np.array(data_X_batch),
np.array(data_y_batch)),
update_inducing=False)
# Train only the kernel parameters and noise variance.
# Keeping the SSGP inducing points fixed results in better
# hyperparameter estimation
start_time = time()
optimize_model(param_model,
trainable_variables=param_model.trainable_variables[1:],
optimizer='scipy',
method='CG')
end_time = time()
total_time_param += end_time - start_time
print_summary(param_model.kernel)
# Update the SGP-IPP model
Xu_visited = curr_sol.copy()[:, :time_step+1]
ipp_model.transform.update_Xu_fixed(Xu_visited)
ipp_model.update(param_model.likelihood.variance,
param_model.kernel)
start_time = time()
_ = optimize_model(ipp_model,
kernel_grad=False,
optimizer='scipy',
method='CG')
end_time = time()
total_time_ipp += end_time - start_time
curr_sol = ipp_model.inducing_variable.Z
curr_sol = ipp_model.transform.expand(curr_sol,
expand_sensor_model=False).numpy()
curr_sol = curr_sol.reshape(num_robots, num_waypoints, 3)
plot_results(ipp_model.transform.expand(curr_sol.reshape(-1, 3),
expand_sensor_model=False).numpy(),
ipp_model.transform.expand(curr_sol.reshape(-1, 3)).numpy(),
time_step+1)
return np.array(sol_data_X), np.array(sol_data_y), total_time_param, total_time_ipp
Generate synthetic data and initial SGP hyperparameters¶
In [4]:
Copied!
# Get the synthetic elevation data
X_train, y_train, X_test, y_test, candidates, X, y = get_dataset(random_seed=0)
train_dim = np.sqrt(X_train.shape[0]).astype(int)
# Train a GP and get the model parameters
print('Optimized Hyperparameters')
_, noise_variance_opt, kernel_opt = get_model_params(X_train, y_train,
lengthscales=[1.0, 1.0],
optimizer='scipy')
# Build a new test set on a grid for easy plotting in a 3D plot
gpr = gpflow.models.GPR((X_test, y_test),
noise_variance=noise_variance_opt,
kernel=kernel_opt)
test_dim = (100, 100)
X_test1 = np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), test_dim[0])
X_test2 = np.linspace(np.min(X[:, 1]), np.max(X[:, 1]), test_dim[1])
X_test1, X_test2 = np.meshgrid(X_test1, X_test2)
X_test = np.stack([X_test1.ravel(), X_test2.ravel()], axis=1)
y_test, y_var = gpr.predict_f(X_test)
y_test = y_test.numpy()
# Plot the data field
plt.imshow(y_test.reshape(test_dim), cmap="jet", origin='lower')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Elevation Data Field')
plt.colorbar(label='Normalized Elevation')
plt.show()
# Get the synthetic elevation data
X_train, y_train, X_test, y_test, candidates, X, y = get_dataset(random_seed=0)
train_dim = np.sqrt(X_train.shape[0]).astype(int)
# Train a GP and get the model parameters
print('Optimized Hyperparameters')
_, noise_variance_opt, kernel_opt = get_model_params(X_train, y_train,
lengthscales=[1.0, 1.0],
optimizer='scipy')
# Build a new test set on a grid for easy plotting in a 3D plot
gpr = gpflow.models.GPR((X_test, y_test),
noise_variance=noise_variance_opt,
kernel=kernel_opt)
test_dim = (100, 100)
X_test1 = np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), test_dim[0])
X_test2 = np.linspace(np.min(X[:, 1]), np.max(X[:, 1]), test_dim[1])
X_test1, X_test2 = np.meshgrid(X_test1, X_test2)
X_test = np.stack([X_test1.ravel(), X_test2.ravel()], axis=1)
y_test, y_var = gpr.predict_f(X_test)
y_test = y_test.numpy()
# Plot the data field
plt.imshow(y_test.reshape(test_dim), cmap="jet", origin='lower')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Elevation Data Field')
plt.colorbar(label='Normalized Elevation')
plt.show()
Optimized Hyperparameters ╒═════════════════════════╤═══════════╤══════════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════╪═══════════╪══════════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ GPR.kernel.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.8371517535182331 │ ├─────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ GPR.kernel.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [2.45802 2.50701] │ ├─────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ GPR.likelihood.variance │ Parameter │ Softplus + Shift │ │ True │ () │ float64 │ 0.04342255274528023 │ ╘═════════════════════════╧═══════════╧══════════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
2024-12-30 19:14:07.494792: W external/local_tsl/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 200000000 exceeds 10% of free system memory. 2024-12-30 19:14:07.523254: W external/local_tsl/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 200000000 exceeds 10% of free system memory. 2024-12-30 19:14:07.667834: W external/local_tsl/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 200000000 exceeds 10% of free system memory. 2024-12-30 19:14:07.739423: W external/local_tsl/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 200000000 exceeds 10% of free system memory. 2024-12-30 19:14:08.063816: W external/local_tsl/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 200000000 exceeds 10% of free system memory.
Generate the AIPP solution¶
In [5]:
Copied!
num_robots = 1
num_placements = 12
num_side = 5 # Use a 5x5 point FoV approximation
# Setup the initial AIPP hyperparameters
print('Initial AIPP Hyperparameters')
_, noise_variance, kernel = get_model_params(X_train, y_train,
lengthscales=[1.0, 1.0],
optimizer='scipy',
max_steps=0)
# Get initial inducing points
Xu_init = get_inducing_pts(X_train, num_placements)
# Initalize the height dimension at 2.0 for all points
Xu_init = np.concatenate((Xu_init, np.ones((Xu_init.shape[0], 1))*2.0), axis=1)
Xu_init[:, :2] = run_tsp(Xu_init[:, :2])[0][0]
# Initialize the non-point FoV transform
fov_transform = SquareHeightTransform(num_side=num_side)
transform = IPPTransform(num_dim=3,
num_robots=1,
sensor_model=fov_transform,
aggregate_fov=True)
# Initialize the IPP model
sgpr, _ = continuous_sgp(num_placements,
X_train,
noise_variance,
kernel,
transform=transform,
Xu_init=Xu_init,
max_steps=0)
sgp_sol_sp = sgpr.inducing_variable.Z.numpy()
# Setup the data acquisition function to emulate the robot's sensor
path2data = lambda x : cont2disc(x, X, y)
# Generate the SGP-based AIPP solution
_, _, param_time, ipp_time = run_aipp(X_train,
sgpr,
Xu_init.reshape(1, -1, 3),
path2data)
print(f'Total Hyperparameter Update Time: {param_time:.2f}s')
print(f'Total IPP Update Time: {ipp_time:.2f}s')
print(f'Average Hyperparameter Update Time: {param_time/num_placements:.2f}s')
print(f'Average IPP Update Time: {ipp_time/num_placements:.2f}s')
num_robots = 1
num_placements = 12
num_side = 5 # Use a 5x5 point FoV approximation
# Setup the initial AIPP hyperparameters
print('Initial AIPP Hyperparameters')
_, noise_variance, kernel = get_model_params(X_train, y_train,
lengthscales=[1.0, 1.0],
optimizer='scipy',
max_steps=0)
# Get initial inducing points
Xu_init = get_inducing_pts(X_train, num_placements)
# Initalize the height dimension at 2.0 for all points
Xu_init = np.concatenate((Xu_init, np.ones((Xu_init.shape[0], 1))*2.0), axis=1)
Xu_init[:, :2] = run_tsp(Xu_init[:, :2])[0][0]
# Initialize the non-point FoV transform
fov_transform = SquareHeightTransform(num_side=num_side)
transform = IPPTransform(num_dim=3,
num_robots=1,
sensor_model=fov_transform,
aggregate_fov=True)
# Initialize the IPP model
sgpr, _ = continuous_sgp(num_placements,
X_train,
noise_variance,
kernel,
transform=transform,
Xu_init=Xu_init,
max_steps=0)
sgp_sol_sp = sgpr.inducing_variable.Z.numpy()
# Setup the data acquisition function to emulate the robot's sensor
path2data = lambda x : cont2disc(x, X, y)
# Generate the SGP-based AIPP solution
_, _, param_time, ipp_time = run_aipp(X_train,
sgpr,
Xu_init.reshape(1, -1, 3),
path2data)
print(f'Total Hyperparameter Update Time: {param_time:.2f}s')
print(f'Total IPP Update Time: {ipp_time:.2f}s')
print(f'Average Hyperparameter Update Time: {param_time/num_placements:.2f}s')
print(f'Average IPP Update Time: {ipp_time/num_placements:.2f}s')
Initial AIPP Hyperparameters ╒═════════════════════════╤═══════════╤══════════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════╪═══════════╪══════════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ GPR.kernel.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │ ├─────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ GPR.kernel.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [1. 1.] │ ├─────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ GPR.likelihood.variance │ Parameter │ Softplus + Shift │ │ True │ () │ float64 │ 0.09999999999999999 │ ╘═════════════════════════╧═══════════╧══════════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.02830909998623969 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [2.52935 4.99828] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.03608860733575918 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.66389 4.2298 ] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤══════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪══════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.047688497211455655 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼──────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.6262 4.20678] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧══════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤══════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪══════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.047733701955419004 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼──────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.09326 4.03863] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧══════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.05702257365194937 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.27988 4.50424] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.06604187384338019 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.3692 4.76543] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.09160363580094916 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.83409 5.53632] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.09052131666299722 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.84722 5.51582] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.08877117097798798 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.63615 4.87825] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.0936660767287354 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.72264 5.59398] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧════════════════════╛
╒═════════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════════════╕ │ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │ ╞═════════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════════════╡ │ SquaredExponential.variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 0.10593340089380918 │ ├─────────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────────────┤ │ SquaredExponential.lengthscales │ Parameter │ Softplus │ │ True │ (2,) │ float64 │ [3.63767 6.41376] │ ╘═════════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════════════╛
Total Hyperparameter Update Time: 15.67s Total IPP Update Time: 22.32s Average Hyperparameter Update Time: 1.31s Average IPP Update Time: 1.86s