OSGPR
sgptools.models.core.osgpr
Provides a streaming sparse Gaussian process model along with initialization function
OSGPR_VFE
Bases: GPModel
, InternalDataTrainingLossMixin
Online Sparse Variational GP regression model from streaming_sparse_gp
Refer to the following paper for more details
- Streaming Gaussian process approximations [Bui et al., 2017]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
tuple
|
(X, y) ndarrays with inputs (n, d) and labels (n, 1) |
required |
kernel |
Kernel
|
gpflow kernel function |
required |
mu_old |
ndarray
|
mean of old |
required |
Su_old |
ndarray
|
posterior covariance of old |
required |
Kaa_old |
ndarray
|
prior covariance of old |
required |
Z_old |
ndarray
|
(m_old, d): Old initial inducing points |
required |
Z |
ndarray
|
(m_new, d): New initial inducing points |
required |
mean_function |
function
|
GP mean function |
None
|
Source code in sgptools/models/core/osgpr.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
maximum_log_likelihood_objective()
Construct a tensorflow function to compute the bound on the marginal likelihood.
Source code in sgptools/models/core/osgpr.py
predict_f(Xnew, full_cov=False)
Compute the mean and variance of the latent function at some new points Xnew.
Source code in sgptools/models/core/osgpr.py
update(data, inducing_variable=None, update_inducing=True)
Configure the OSGPR to adapt to a new batch of data. Note: The OSGPR needs to be trained using gradient-based approaches after update.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
tuple
|
(X, y) ndarrays with new batch of inputs (n, d) and labels (n, ndim) |
required |
inducing_variable |
ndarray
|
(m_new, d): New initial inducing points |
None
|
update_inducing |
bool
|
Whether to update the inducing points |
True
|
Source code in sgptools/models/core/osgpr.py
init_osgpr(X_train, num_inducing=10, lengthscales=1.0, variance=1.0, noise_variance=0.001, kernel=None, ndim=1)
Initialize a VFE OSGPR model with an RBF kernel with unit variance and lengthcales, and 0.001 noise variance. Used in the Online Continuous SGP approach.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X_train |
ndarray
|
(n, d); Unlabeled random sampled training points. They only effect the initial inducing point locations, i.e., limits them to the bounds of the data |
required |
num_inducing |
int
|
Number of inducing points |
10
|
lengthscales |
float or list
|
Kernel lengthscale(s), if passed as a list, each element corresponds to each data dimension |
1.0
|
variance |
float
|
Kernel variance |
1.0
|
noise_variance |
float
|
Data noise variance |
0.001
|
kernel |
Kernel
|
gpflow kernel function |
None
|
ndim |
int
|
Number of output dimensions |
1
|
Returns:
Name | Type | Description |
---|---|---|
online_param |
OSGPR_VFE
|
Initialized online sparse Gaussian process model |