Skip to content

OSGPR

sgptools.models.core.osgpr

Provides a streaming sparse Gaussian process model along with initialization function

OSGPR_VFE

Bases: GPModel, InternalDataTrainingLossMixin

Online Sparse Variational GP regression model from streaming_sparse_gp

Refer to the following paper for more details
  • Streaming Gaussian process approximations [Bui et al., 2017]

Parameters:

Name Type Description Default
data tuple

(X, y) ndarrays with inputs (n, d) and labels (n, 1)

required
kernel Kernel

gpflow kernel function

required
mu_old ndarray

mean of old q(u); here u are the latents corresponding to the inducing points Z_old

required
Su_old ndarray

posterior covariance of old q(u)

required
Kaa_old ndarray

prior covariance of old q(u)

required
Z_old ndarray

(m_old, d): Old initial inducing points

required
Z ndarray

(m_new, d): New initial inducing points

required
mean_function function

GP mean function

None
Source code in sgptools/models/core/osgpr.py
class OSGPR_VFE(GPModel, InternalDataTrainingLossMixin):
    """Online Sparse Variational GP regression model from [streaming_sparse_gp](https://github.com/thangbui/streaming_sparse_gp/tree/master)

    Refer to the following paper for more details:
        - Streaming Gaussian process approximations [Bui et al., 2017]

    Args:
        data (tuple): (X, y) ndarrays with inputs (n, d) and labels (n, 1)
        kernel (gpflow.kernels.Kernel): gpflow kernel function
        mu_old (ndarray): mean of old `q(u)`; here `u` are the latents corresponding to the inducing points `Z_old`
        Su_old (ndarray): posterior covariance of old `q(u)`
        Kaa_old (ndarray): prior covariance of old `q(u)`
        Z_old (ndarray): (m_old, d): Old initial inducing points
        Z (ndarray): (m_new, d): New initial inducing points
        mean_function (function): GP mean function
    """
    def __init__(self, data, kernel, mu_old, Su_old, Kaa_old, Z_old, Z, mean_function=None):
        self.X, self.Y = self.data = gpflow.models.util.data_input_to_tensor(data)
        likelihood = gpflow.likelihoods.Gaussian()
        num_latent_gps = GPModel.calc_num_latent_gps_from_data(data, kernel, likelihood)
        super().__init__(kernel, likelihood, mean_function, num_latent_gps)

        self.inducing_variable = InducingPoints(Z)
        self.num_data = self.X.shape[0]

        self.mu_old = tf.Variable(mu_old, shape=tf.TensorShape(None), trainable=False)
        self.M_old = Z_old.shape[0]
        self.Su_old = tf.Variable(Su_old, shape=tf.TensorShape(None), trainable=False)
        self.Kaa_old = tf.Variable(Kaa_old, shape=tf.TensorShape(None), trainable=False)
        self.Z_old = tf.Variable(Z_old, shape=tf.TensorShape(None), trainable=False)

    def init_Z(self):
        M = self.inducing_variable.Z.shape[0]
        M_old = int(0.7 * M)
        M_new = M - M_old
        old_Z = self.Z_old.numpy()[np.random.permutation(M)[0:M_old], :]
        new_Z = self.X.numpy()[np.random.permutation(self.X.shape[0])[0:M_new], :]
        Z = np.vstack((old_Z, new_Z))
        return Z

    def update(self, data, inducing_variable=None, update_inducing=True):
        """Configure the OSGPR to adapt to a new batch of data. 
        Note: The OSGPR needs to be trained using gradient-based approaches after update.

        Args:
            data (tuple): (X, y) ndarrays with new batch of inputs (n, d) and labels (n, ndim)
            inducing_variable (ndarray): (m_new, d): New initial inducing points
            update_inducing (bool): Whether to update the inducing points
        """
        self.X, self.Y = self.data = gpflow.models.util.data_input_to_tensor(data)
        self.num_data = self.X.shape[0]

        # Update the inducing points        
        self.Z_old.assign(self.inducing_variable.Z.numpy())
        if inducing_variable is None and update_inducing:
            inducing_variable = self.init_Z()
        if inducing_variable is not None:
            self.inducing_variable.Z.assign(inducing_variable)

        # Get posterior mean and covariance for the old inducing points
        mu_old, Su_old = self.predict_f(self.Z_old, full_cov=True)
        self.mu_old.assign(mu_old.numpy())
        self.Su_old.assign(Su_old.numpy())

        # Get the prior covariance matrix for the old inducing points
        Kaa_old = self.kernel(self.Z_old)
        self.Kaa_old.assign(Kaa_old.numpy())

    def _common_terms(self):
        Mb = self.inducing_variable.num_inducing
        Ma = self.M_old
        # jitter = gpflow.default_jitter()
        jitter = gpflow.utilities.to_default_float(1e-4)
        sigma2 = self.likelihood.variance
        sigma = tf.sqrt(sigma2)

        Saa = self.Su_old
        ma = self.mu_old

        # a is old inducing points, b is new
        # f is training points
        # s is test points
        Kbf = covariances.Kuf(self.inducing_variable, self.kernel, self.X)
        Kbb = covariances.Kuu(self.inducing_variable, self.kernel, jitter=jitter)
        Kba = covariances.Kuf(self.inducing_variable, self.kernel, self.Z_old)
        Kaa_cur = gpflow.utilities.add_noise_cov(self.kernel(self.Z_old), jitter)
        Kaa = gpflow.utilities.add_noise_cov(self.Kaa_old, jitter)

        err = self.Y - self.mean_function(self.X)

        Sainv_ma = tf.linalg.solve(Saa, ma)
        Sinv_y = self.Y / sigma2
        c1 = tf.matmul(Kbf, Sinv_y)
        c2 = tf.matmul(Kba, Sainv_ma)
        c = c1 + c2

        Lb = tf.linalg.cholesky(Kbb)
        Lbinv_c = tf.linalg.triangular_solve(Lb, c, lower=True)
        Lbinv_Kba = tf.linalg.triangular_solve(Lb, Kba, lower=True)
        Lbinv_Kbf = tf.linalg.triangular_solve(Lb, Kbf, lower=True) / sigma
        d1 = tf.matmul(Lbinv_Kbf, Lbinv_Kbf, transpose_b=True)

        LSa = tf.linalg.cholesky(Saa)
        Kab_Lbinv = tf.linalg.matrix_transpose(Lbinv_Kba)
        LSainv_Kab_Lbinv = tf.linalg.triangular_solve(
            LSa, Kab_Lbinv, lower=True)
        d2 = tf.matmul(LSainv_Kab_Lbinv, LSainv_Kab_Lbinv, transpose_a=True)

        La = tf.linalg.cholesky(Kaa)
        Lainv_Kab_Lbinv = tf.linalg.triangular_solve(
            La, Kab_Lbinv, lower=True)
        d3 = tf.matmul(Lainv_Kab_Lbinv, Lainv_Kab_Lbinv, transpose_a=True)

        D = tf.eye(Mb, dtype=gpflow.default_float()) + d1 + d2 - d3
        D = gpflow.utilities.add_noise_cov(D, jitter)
        LD = tf.linalg.cholesky(D)

        LDinv_Lbinv_c = tf.linalg.triangular_solve(LD, Lbinv_c, lower=True)

        return (Kbf, Kba, Kaa, Kaa_cur, La, Kbb, Lb, D, LD,
                Lbinv_Kba, LDinv_Lbinv_c, err, d1)

    def maximum_log_likelihood_objective(self):
        """
        Construct a tensorflow function to compute the bound on the marginal
        likelihood. 
        """

        Mb = self.inducing_variable.num_inducing
        Ma = self.M_old
        jitter = gpflow.default_jitter()
        # jitter = gpflow.utilities.to_default_float(1e-4)
        sigma2 = self.likelihood.variance
        sigma = tf.sqrt(sigma2)
        N = self.num_data

        Saa = self.Su_old
        ma = self.mu_old

        # a is old inducing points, b is new
        # f is training points
        Kfdiag = self.kernel(self.X, full_cov=False)
        (Kbf, Kba, Kaa, Kaa_cur, La, Kbb, Lb, D, LD,
            Lbinv_Kba, LDinv_Lbinv_c, err, Qff) = self._common_terms()

        LSa = tf.linalg.cholesky(Saa)
        Lainv_ma = tf.linalg.triangular_solve(LSa, ma, lower=True)

        # constant term
        bound = -0.5 * N * np.log(2 * np.pi)
        # quadratic term
        bound += -0.5 * tf.reduce_sum(tf.square(err)) / sigma2
        # bound += -0.5 * tf.reduce_sum(ma * Sainv_ma)
        bound += -0.5 * tf.reduce_sum(tf.square(Lainv_ma))
        bound += 0.5 * tf.reduce_sum(tf.square(LDinv_Lbinv_c))
        # log det term
        bound += -0.5 * N * tf.reduce_sum(tf.math.log(sigma2))
        bound += - tf.reduce_sum(tf.math.log(tf.linalg.diag_part(LD)))

        # delta 1: trace term
        bound += -0.5 * tf.reduce_sum(Kfdiag) / sigma2
        bound += 0.5 * tf.reduce_sum(tf.linalg.diag_part(Qff))

        # delta 2: a and b difference
        bound += tf.reduce_sum(tf.math.log(tf.linalg.diag_part(La)))
        bound += - tf.reduce_sum(tf.math.log(tf.linalg.diag_part(LSa)))

        Kaadiff = Kaa_cur - tf.matmul(Lbinv_Kba, Lbinv_Kba, transpose_a=True)
        Sainv_Kaadiff = tf.linalg.solve(Saa, Kaadiff)
        Kainv_Kaadiff = tf.linalg.solve(Kaa, Kaadiff)

        bound += -0.5 * tf.reduce_sum(
            tf.linalg.diag_part(Sainv_Kaadiff) - tf.linalg.diag_part(Kainv_Kaadiff))

        return bound

    def predict_f(self, Xnew, full_cov=False):
        """
        Compute the mean and variance of the latent function at some new points
        Xnew. 
        """

        # jitter = gpflow.default_jitter()
        jitter = gpflow.utilities.to_default_float(1e-4)

        # a is old inducing points, b is new
        # f is training points
        # s is test points
        Kbs = covariances.Kuf(self.inducing_variable, self.kernel, Xnew)
        (Kbf, Kba, Kaa, Kaa_cur, La, Kbb, Lb, D, LD,
            Lbinv_Kba, LDinv_Lbinv_c, err, Qff) = self._common_terms()

        Lbinv_Kbs = tf.linalg.triangular_solve(Lb, Kbs, lower=True)
        LDinv_Lbinv_Kbs = tf.linalg.triangular_solve(LD, Lbinv_Kbs, lower=True)
        mean = tf.matmul(LDinv_Lbinv_Kbs, LDinv_Lbinv_c, transpose_a=True)

        if full_cov:
            Kss = self.kernel(Xnew) + jitter * tf.eye(tf.shape(Xnew)[0], dtype=gpflow.default_float())
            var1 = Kss
            var2 = - tf.matmul(Lbinv_Kbs, Lbinv_Kbs, transpose_a=True)
            var3 = tf.matmul(LDinv_Lbinv_Kbs, LDinv_Lbinv_Kbs, transpose_a=True)
            var = var1 + var2 + var3
        else:
            var1 = self.kernel(Xnew, full_cov=False)
            var2 = -tf.reduce_sum(tf.square(Lbinv_Kbs), axis=0)
            var3 = tf.reduce_sum(tf.square(LDinv_Lbinv_Kbs), axis=0)
            var = var1 + var2 + var3

        return mean + self.mean_function(Xnew), var

maximum_log_likelihood_objective()

Construct a tensorflow function to compute the bound on the marginal likelihood.

Source code in sgptools/models/core/osgpr.py
def maximum_log_likelihood_objective(self):
    """
    Construct a tensorflow function to compute the bound on the marginal
    likelihood. 
    """

    Mb = self.inducing_variable.num_inducing
    Ma = self.M_old
    jitter = gpflow.default_jitter()
    # jitter = gpflow.utilities.to_default_float(1e-4)
    sigma2 = self.likelihood.variance
    sigma = tf.sqrt(sigma2)
    N = self.num_data

    Saa = self.Su_old
    ma = self.mu_old

    # a is old inducing points, b is new
    # f is training points
    Kfdiag = self.kernel(self.X, full_cov=False)
    (Kbf, Kba, Kaa, Kaa_cur, La, Kbb, Lb, D, LD,
        Lbinv_Kba, LDinv_Lbinv_c, err, Qff) = self._common_terms()

    LSa = tf.linalg.cholesky(Saa)
    Lainv_ma = tf.linalg.triangular_solve(LSa, ma, lower=True)

    # constant term
    bound = -0.5 * N * np.log(2 * np.pi)
    # quadratic term
    bound += -0.5 * tf.reduce_sum(tf.square(err)) / sigma2
    # bound += -0.5 * tf.reduce_sum(ma * Sainv_ma)
    bound += -0.5 * tf.reduce_sum(tf.square(Lainv_ma))
    bound += 0.5 * tf.reduce_sum(tf.square(LDinv_Lbinv_c))
    # log det term
    bound += -0.5 * N * tf.reduce_sum(tf.math.log(sigma2))
    bound += - tf.reduce_sum(tf.math.log(tf.linalg.diag_part(LD)))

    # delta 1: trace term
    bound += -0.5 * tf.reduce_sum(Kfdiag) / sigma2
    bound += 0.5 * tf.reduce_sum(tf.linalg.diag_part(Qff))

    # delta 2: a and b difference
    bound += tf.reduce_sum(tf.math.log(tf.linalg.diag_part(La)))
    bound += - tf.reduce_sum(tf.math.log(tf.linalg.diag_part(LSa)))

    Kaadiff = Kaa_cur - tf.matmul(Lbinv_Kba, Lbinv_Kba, transpose_a=True)
    Sainv_Kaadiff = tf.linalg.solve(Saa, Kaadiff)
    Kainv_Kaadiff = tf.linalg.solve(Kaa, Kaadiff)

    bound += -0.5 * tf.reduce_sum(
        tf.linalg.diag_part(Sainv_Kaadiff) - tf.linalg.diag_part(Kainv_Kaadiff))

    return bound

predict_f(Xnew, full_cov=False)

Compute the mean and variance of the latent function at some new points Xnew.

Source code in sgptools/models/core/osgpr.py
def predict_f(self, Xnew, full_cov=False):
    """
    Compute the mean and variance of the latent function at some new points
    Xnew. 
    """

    # jitter = gpflow.default_jitter()
    jitter = gpflow.utilities.to_default_float(1e-4)

    # a is old inducing points, b is new
    # f is training points
    # s is test points
    Kbs = covariances.Kuf(self.inducing_variable, self.kernel, Xnew)
    (Kbf, Kba, Kaa, Kaa_cur, La, Kbb, Lb, D, LD,
        Lbinv_Kba, LDinv_Lbinv_c, err, Qff) = self._common_terms()

    Lbinv_Kbs = tf.linalg.triangular_solve(Lb, Kbs, lower=True)
    LDinv_Lbinv_Kbs = tf.linalg.triangular_solve(LD, Lbinv_Kbs, lower=True)
    mean = tf.matmul(LDinv_Lbinv_Kbs, LDinv_Lbinv_c, transpose_a=True)

    if full_cov:
        Kss = self.kernel(Xnew) + jitter * tf.eye(tf.shape(Xnew)[0], dtype=gpflow.default_float())
        var1 = Kss
        var2 = - tf.matmul(Lbinv_Kbs, Lbinv_Kbs, transpose_a=True)
        var3 = tf.matmul(LDinv_Lbinv_Kbs, LDinv_Lbinv_Kbs, transpose_a=True)
        var = var1 + var2 + var3
    else:
        var1 = self.kernel(Xnew, full_cov=False)
        var2 = -tf.reduce_sum(tf.square(Lbinv_Kbs), axis=0)
        var3 = tf.reduce_sum(tf.square(LDinv_Lbinv_Kbs), axis=0)
        var = var1 + var2 + var3

    return mean + self.mean_function(Xnew), var

update(data, inducing_variable=None, update_inducing=True)

Configure the OSGPR to adapt to a new batch of data. Note: The OSGPR needs to be trained using gradient-based approaches after update.

Parameters:

Name Type Description Default
data tuple

(X, y) ndarrays with new batch of inputs (n, d) and labels (n, ndim)

required
inducing_variable ndarray

(m_new, d): New initial inducing points

None
update_inducing bool

Whether to update the inducing points

True
Source code in sgptools/models/core/osgpr.py
def update(self, data, inducing_variable=None, update_inducing=True):
    """Configure the OSGPR to adapt to a new batch of data. 
    Note: The OSGPR needs to be trained using gradient-based approaches after update.

    Args:
        data (tuple): (X, y) ndarrays with new batch of inputs (n, d) and labels (n, ndim)
        inducing_variable (ndarray): (m_new, d): New initial inducing points
        update_inducing (bool): Whether to update the inducing points
    """
    self.X, self.Y = self.data = gpflow.models.util.data_input_to_tensor(data)
    self.num_data = self.X.shape[0]

    # Update the inducing points        
    self.Z_old.assign(self.inducing_variable.Z.numpy())
    if inducing_variable is None and update_inducing:
        inducing_variable = self.init_Z()
    if inducing_variable is not None:
        self.inducing_variable.Z.assign(inducing_variable)

    # Get posterior mean and covariance for the old inducing points
    mu_old, Su_old = self.predict_f(self.Z_old, full_cov=True)
    self.mu_old.assign(mu_old.numpy())
    self.Su_old.assign(Su_old.numpy())

    # Get the prior covariance matrix for the old inducing points
    Kaa_old = self.kernel(self.Z_old)
    self.Kaa_old.assign(Kaa_old.numpy())

init_osgpr(X_train, num_inducing=10, lengthscales=1.0, variance=1.0, noise_variance=0.001, kernel=None, ndim=1)

Initialize a VFE OSGPR model with an RBF kernel with unit variance and lengthcales, and 0.001 noise variance. Used in the Online Continuous SGP approach.

Parameters:

Name Type Description Default
X_train ndarray

(n, d); Unlabeled random sampled training points. They only effect the initial inducing point locations, i.e., limits them to the bounds of the data

required
num_inducing int

Number of inducing points

10
lengthscales float or list

Kernel lengthscale(s), if passed as a list, each element corresponds to each data dimension

1.0
variance float

Kernel variance

1.0
noise_variance float

Data noise variance

0.001
kernel Kernel

gpflow kernel function

None
ndim int

Number of output dimensions

1

Returns:

Name Type Description
online_param OSGPR_VFE

Initialized online sparse Gaussian process model

Source code in sgptools/models/core/osgpr.py
def init_osgpr(X_train, 
               num_inducing=10, 
               lengthscales=1.0, 
               variance=1.0,
               noise_variance=0.001,
               kernel=None,
               ndim=1):
    """Initialize a VFE OSGPR model with an RBF kernel with 
    unit variance and lengthcales, and 0.001 noise variance.
    Used in the Online Continuous SGP approach. 

    Args:
        X_train (ndarray): (n, d); Unlabeled random sampled training points. 
                        They only effect the initial inducing point locations, 
                        i.e., limits them to the bounds of the data
        num_inducing (int): Number of inducing points
        lengthscales (float or list): Kernel lengthscale(s), if passed as a list, 
                                each element corresponds to each data dimension
        variance (float): Kernel variance
        noise_variance (float): Data noise variance
        kernel (gpflow.kernels.Kernel): gpflow kernel function
        ndim (int): Number of output dimensions

    Returns:
        online_param (OSGPR_VFE): Initialized online sparse Gaussian process model
    """

    if kernel is None:
        kernel = gpflow.kernels.SquaredExponential(lengthscales=lengthscales, 
                                                   variance=variance)

    y_train = np.zeros((len(X_train), ndim), dtype=X_train.dtype)
    Z_init = get_inducing_pts(X_train, num_inducing)
    init_param = gpflow.models.SGPR((X_train, y_train),
                                    kernel, 
                                    inducing_variable=Z_init, 
                                    noise_variance=noise_variance)

    # Initialize the OSGPR model using the parameters from the SGPR model
    # The X_train and y_train here will be overwritten in the online phase 
    X_train = np.zeros([2, X_train.shape[-1]], dtype=X_train.dtype)
    y_train =  np.zeros([2, ndim], dtype=X_train.dtype)
    Zopt = init_param.inducing_variable.Z.numpy()
    mu, Su = init_param.predict_f(Zopt, full_cov=True)
    Kaa = init_param.kernel(Zopt)
    online_param = OSGPR_VFE((X_train[:2], y_train[:2]),
                             init_param.kernel,
                             mu, Su[0], Kaa,
                             Zopt, Zopt)
    online_param.likelihood.variance.assign(init_param.likelihood.variance)

    return online_param