AugmentedSGPR
sgptools.models.core.augmented_sgpr
Provides a sparse Gaussian process model with update, expand, and aggregate functions
AugmentedSGPR
Bases: SGPR
SGPR model from the GPFlow library augmented to use a transform object's expand and aggregate functions on the inducing points where necessary. The object has an additional update function to update the kernel and noise variance parameters (currently, the online updates part works only with RBF kernels).
Refer to the following papers for more details
- Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces [Jakkala and Akella, 2023]
- Multi-Robot Informative Path Planning from Regression with Sparse Gaussian Processes [Jakkala and Akella, 2024]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
tuple
|
(X, y) ndarrays with inputs (n, d) and labels (n, 1) |
required |
kernel |
Kernel
|
gpflow kernel function |
required |
noise_variance |
float
|
data variance |
required |
inducing_variable |
ndarray
|
(m, d); Initial inducing points |
required |
transform |
Transform
|
Transform object |
None
|
inducing_variable_time |
ndarray
|
(m, d); Temporal dimensions of the inducing points, used when modeling spatio-temporal IPP |
None
|
Source code in sgptools/models/core/augmented_sgpr.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
elbo()
Construct a tensorflow function to compute the bound on the marginal likelihood. For a derivation of the terms in here, see the associated SGPR notebook.
Source code in sgptools/models/core/augmented_sgpr.py
predict_f(Xnew, full_cov=False, full_output_cov=False)
Compute the mean and variance of the latent function at some new points Xnew. For a derivation of the terms in here, see the associated SGPR notebook.
Source code in sgptools/models/core/augmented_sgpr.py
update(noise_variance, kernel)
Update SGP noise variance and kernel function parameters
Parameters:
Name | Type | Description | Default |
---|---|---|---|
noise_variance |
float
|
data variance |
required |
kernel |
Kernel
|
gpflow kernel function |
required |