Skip to content

GPflow

sgptools.utils.gpflow

TraceInducingPts

Bases: MonitorTask

GPflow monitoring task, used to trace the inducing points states at every step during optimization.

Parameters:

Name Type Description Default
model sgpr

GPflow GP/SGP model

required
Source code in sgptools/utils/gpflow.py
class TraceInducingPts(gpflow.monitor.MonitorTask):
    '''
    GPflow monitoring task, used to trace the inducing points
    states at every step during optimization. 

    Args:
        model (gpflow.models.sgpr): GPflow GP/SGP model
    '''
    def __init__(self, model):
        super().__init__()
        self.trace = []
        self.model = model

    def run(self, **kwargs):
        '''
        Method used to extract the inducing points and 
        apply IPP fixed points transform if available
        '''
        Xu = self.model.inducing_variable.Z
        Xu_exp = self.model.transform.expand(Xu, 
                            expand_sensor_model=False).numpy()
        self.trace.append(Xu_exp)

    def get_trace(self):
        '''
        Returns the inducing points collected at each optimization step

        Returns:
            trace (ndarray): (n, m, d); Array with the inducing points.
                            `n` is the number of optimization steps;
                            `m` is the number of inducing points;
                            `d` is the dimension of the inducing points.
        '''
        return np.array(self.trace)

get_trace()

Returns the inducing points collected at each optimization step

Returns:

Name Type Description
trace ndarray

(n, m, d); Array with the inducing points. n is the number of optimization steps; m is the number of inducing points; d is the dimension of the inducing points.

Source code in sgptools/utils/gpflow.py
def get_trace(self):
    '''
    Returns the inducing points collected at each optimization step

    Returns:
        trace (ndarray): (n, m, d); Array with the inducing points.
                        `n` is the number of optimization steps;
                        `m` is the number of inducing points;
                        `d` is the dimension of the inducing points.
    '''
    return np.array(self.trace)

run(**kwargs)

Method used to extract the inducing points and apply IPP fixed points transform if available

Source code in sgptools/utils/gpflow.py
def run(self, **kwargs):
    '''
    Method used to extract the inducing points and 
    apply IPP fixed points transform if available
    '''
    Xu = self.model.inducing_variable.Z
    Xu_exp = self.model.transform.expand(Xu, 
                        expand_sensor_model=False).numpy()
    self.trace.append(Xu_exp)

get_model_params(X_train, y_train, max_steps=1500, lr=0.01, print_params=True, lengthscales=1.0, variance=1.0, noise_variance=0.1, kernel=None, return_gp=False, train_inducing_pts=False, num_inducing_pts=500, **kwargs)

Train a GP on the given training set. Trains a sparse GP if the training set is larger than 1000 samples.

Parameters:

Name Type Description Default
X_train ndarray

(n, d); Training set inputs

required
y_train ndarray

(n, 1); Training set labels

required
max_steps int

Maximum number of optimization steps

1500
lr float

Optimization learning rate

0.01
print_params bool

If True, prints the optimized GP parameters

True
lengthscales float or list

Kernel lengthscale(s), if passed as a list, each element corresponds to each data dimension

1.0
variance float

Kernel variance

1.0
noise_variance float

Data noise variance

0.1
kernel Kernel

gpflow kernel function

None
return_gp bool

If True, returns the trained GP model

False
train_inducing_pts bool

If True, trains the inducing points when using a sparse GP model

False
num_inducing_pts int

Number of inducing points to use when training a sparse GP model

500

Returns:

Name Type Description
loss list

Loss values obtained during training

variance float

Optimized data noise variance

kernel Kernel

Optimized gpflow kernel function

gp GPR

Optimized gpflow GP model. Returned only if return_gp=True.

Source code in sgptools/utils/gpflow.py
def get_model_params(X_train, y_train, 
                     max_steps=1500, 
                     lr=1e-2, 
                     print_params=True, 
                     lengthscales=1.0, 
                     variance=1.0, 
                     noise_variance=0.1,
                     kernel=None,
                     return_gp=False,
                     train_inducing_pts=False,
                     num_inducing_pts=500,
                     **kwargs):
    """Train a GP on the given training set. 
    Trains a sparse GP if the training set is larger than 1000 samples.

    Args:
        X_train (ndarray): (n, d); Training set inputs
        y_train (ndarray): (n, 1); Training set labels
        max_steps (int): Maximum number of optimization steps
        lr (float): Optimization learning rate
        print_params (bool): If True, prints the optimized GP parameters
        lengthscales (float or list): Kernel lengthscale(s), if passed as a list, 
                                each element corresponds to each data dimension
        variance (float): Kernel variance
        noise_variance (float): Data noise variance
        kernel (gpflow.kernels.Kernel): gpflow kernel function
        return_gp (bool): If True, returns the trained GP model
        train_inducing_pts (bool): If True, trains the inducing points when
                                   using a sparse GP model
        num_inducing_pts (int): Number of inducing points to use when training
                                a sparse GP model

    Returns:
        loss (list): Loss values obtained during training
        variance (float): Optimized data noise variance
        kernel (gpflow.kernels.Kernel): Optimized gpflow kernel function
        gp (gpflow.models.GPR): Optimized gpflow GP model. 
                                Returned only if ```return_gp=True```.

    """
    if kernel is None:
        kernel = gpflow.kernels.SquaredExponential(lengthscales=lengthscales, 
                                                   variance=variance)

    if len(X_train) <= 1500:
        gpr = gpflow.models.GPR(data=(X_train, y_train), 
                                kernel=kernel,
                                noise_variance=noise_variance)
        trainable_variables=gpr.trainable_variables
    else:
        inducing_pts = get_inducing_pts(X_train, num_inducing_pts)
        gpr = gpflow.models.SGPR(data=(X_train, y_train), 
                                 kernel=kernel,
                                 inducing_variable=inducing_pts,
                                 noise_variance=noise_variance)
        if train_inducing_pts:
            trainable_variables=gpr.trainable_variables
        else:
            trainable_variables=gpr.trainable_variables[1:]

    if max_steps > 0:
        loss = optimize_model(gpr, max_steps=max_steps, lr=lr, 
                              trainable_variables=trainable_variables,
                              **kwargs)
    else:
        loss = 0

    if print_params:
        print_summary(gpr)

    if return_gp:
        return loss, gpr.likelihood.variance, kernel, gpr
    else:
        return loss, gpr.likelihood.variance, kernel

optimize_model(model, max_steps=2000, kernel_grad=True, lr=0.01, optimizer='scipy', method=None, verbose=False, trace_fn=None, convergence_criterion=True, trainable_variables=None, tol=None)

Trains a GP/SGP model

Parameters:

Name Type Description Default
model models

GPflow GP/SGP model to train.

required
max_steps int

Maximum number of training steps.

2000
kernel_grad bool

If False, the kernel parameters will not be optimized. Ignored when trainable_variables are passed.

True
lr float

Optimization learning rate.

0.01
optimizer str

Optimizer to use for training (scipy or tf).

'scipy'
method str

Optimization method refer to scipy minimize and tf optimizers for full list

None
verbose bool

If True, the training progress will be printed when using Scipy.

False
trace_fn str

Function to trace metrics during training. If None, the loss values are returned; If traceXu, it the inducing points states at each optimization step are returned (increases computation time).

None
convergence_criterion bool

If True and using a tensorflow optimizer, it enables early stopping when the loss plateaus.

True
trainable_variables list

List of model variables to train.

None
tol float

Convergence tolerance to decide when to stop optimization.

None
Source code in sgptools/utils/gpflow.py
def optimize_model(model, 
                   max_steps=2000, 
                   kernel_grad=True, 
                   lr=1e-2, 
                   optimizer='scipy', 
                   method=None,
                   verbose=False, 
                   trace_fn=None,
                   convergence_criterion=True,
                   trainable_variables=None,
                   tol=None):
    """
    Trains a GP/SGP model

    Args:
        model (gpflow.models): GPflow GP/SGP model to train.
        max_steps (int): Maximum number of training steps.
        kernel_grad (bool): If `False`, the kernel parameters will not be optimized. 
                            Ignored when `trainable_variables` are passed.
        lr (float): Optimization learning rate.
        optimizer (str): Optimizer to use for training (`scipy` or `tf`).
        method (str): Optimization method refer to [scipy minimize](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize) 
                      and [tf optimizers](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers) for full list
        verbose (bool): If `True`, the training progress will be printed when using Scipy.
        trace_fn (str): Function to trace metrics during training. 
                        If `None`, the loss values are returned;
                        If `traceXu`, it the inducing points states at each optimization step are returned (increases computation time).
        convergence_criterion (bool): If `True` and using a tensorflow optimizer, it 
                                      enables early stopping when the loss plateaus.
        trainable_variables (list): List of model variables to train.
        tol (float): Convergence tolerance to decide when to stop optimization.
    """
    # Train all variables if trainable_variables are not provided
    # If kernel_gradient is False, disable the kernel parameter gradient updates
    if trainable_variables is None and kernel_grad:
        trainable_variables=model.trainable_variables
    elif trainable_variables is None and not kernel_grad:
        trainable_variables=model.trainable_variables[:1]

    if optimizer == 'scipy':
        if method is None:
            method = 'L-BFGS-B'

        if trace_fn == 'traceXu':
            execute_task = TraceInducingPts(model)
            task_group = gpflow.monitor.MonitorTaskGroup(execute_task, 
                                                         period=1)
            trace_fn = gpflow.monitor.Monitor(task_group)

        opt = gpflow.optimizers.Scipy()
        losses = opt.minimize(model.training_loss,
                              trainable_variables,
                              method=method,
                              options=dict(disp=verbose, maxiter=max_steps),
                              tol=tol,
                              step_callback=trace_fn)
        if trace_fn is None:
            losses = losses.fun
        else:
            losses = trace_fn.task_groups[0].tasks[0].get_trace()
    else:
        if trace_fn is None:
            trace_fn = lambda x: x.loss
        elif trace_fn == 'traceXu':
            def trace_fn(traceable_quantities):
                return model.inducing_variable.Z.numpy()

        if method is None:
            method = 'adam'
        opt = tf.keras.optimizers.get(method)
        opt.learning_rate = lr
        loss_fn = model.training_loss
        if convergence_criterion:
            convergence_criterion = tfp.optimizer.convergence_criteria.LossNotDecreasing(
                                            atol=1e-5, 
                                            window_size=50,
                                            min_num_steps=int(max_steps*0.1))
        else:
            convergence_criterion = None
        losses = tfp.math.minimize(loss_fn,
                                   trainable_variables=trainable_variables,
                                   num_steps=max_steps,
                                   optimizer=opt,
                                   convergence_criterion=convergence_criterion,
                                   trace_fn=trace_fn)
        losses = losses.numpy()

    return losses

plot_loss(losses, save_file=None)

Helper function to plot the training loss

Parameters:

Name Type Description Default
losses list

list of loss values

required
save_file str

If passed, the loss plot will be saved to the save_file

None
Source code in sgptools/utils/gpflow.py
def plot_loss(losses, save_file=None):
    """Helper function to plot the training loss

    Args:
        losses (list): list of loss values
        save_file (str): If passed, the loss plot will be saved to the `save_file`
    """
    plt.plot(losses)
    plt.title('Log Likelihood')
    plt.xlabel('Iteration')
    plt.ylabel('Log Likelihood')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)

    if save_file is not None:
        plt.savefig(save_file, bbox_inches='tight')
        plt.close()
    else:
        plt.show()