Genetic Algorithm
sgptools.models.cma_es
CMA_ES
Class for optimizing sensor placements using CMA-ES (a genetic algorithm)
Refer to the following paper for more details
- Adaptive Continuous-Space Informative Path Planning for Online Environmental Monitoring [Hitz et al., 2017]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X_train |
ndarray
|
(n, d); Locations in the environment used to approximate the monitoring regions |
required |
noise_variance |
float
|
data variance |
required |
kernel |
Kernel
|
gpflow kernel function |
required |
distance_budget |
float
|
Distance budget for when treating the inducing points as waypoints of a path |
None
|
num_robots |
int
|
Number of robots, used when modeling multi-robot IPP with a distance budget |
1
|
transform |
Transform
|
Transform object |
None
|
Source code in sgptools/models/cma_es.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
objective(X)
Objective function (GP-based Mutual Information)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
(n, d); Current solution sensor placement locations |
required |
Source code in sgptools/models/cma_es.py
optimize(num_sensors=10, max_steps=5000, tol=1e-06, X_init=None, verbose=0, seed=1234)
Optimizes the sensor placements using CMA-ES without any constraints
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_sensors |
int
|
Number of sensor locations to optimize |
10
|
max_steps |
int
|
Maximum number of optimization steps |
5000
|
tol |
float
|
Convergence tolerance to decide when to stop optimization |
1e-06
|
X_init |
ndarray
|
(m, d); Initial inducing points |
None
|
verbose |
int
|
The level of verbosity. |
0
|
seed |
int
|
The algorithm will use it to seed the randomnumber generator, ensuring replicability. |
1234
|
Returns:
Name | Type | Description |
---|---|---|
Xu |
ndarray
|
(m, d); Solution sensor placement locations |
Source code in sgptools/models/cma_es.py
update(noise_variance, kernel)
Update GP noise variance and kernel function parameters
Parameters:
Name | Type | Description | Default |
---|---|---|---|
noise_variance |
float
|
data variance |
required |
kernel |
Kernel
|
gpflow kernel function |
required |