Skip to content

Home

Image title Image title

SGP-Tools is a software suite for Sensor Placement and Informative Path Planning.

The library includes python code for the following:

  • Greedy algorithm-based approaches
  • Bayesian optimization-based approaches
  • Genetic algorithm-based approaches
  • Sparse Gaussian process (SGP)-based approaches

Installation

The library is available as a pip package. To install the package, run the following command:

python3 -m pip install sgptools

Installation from source:

git clone https://github.com/itskalvik/sgp-tools.git
cd sgp-tools/
python3 -m pip install -r requirements.txt
python3 -m pip install -e .

Note: The requirements.txt file contains packages and their latest versions that were last verified to be working without any issues.

Quick Start

Please refer to the example Jupyter notebooks demonstrating the methods included in the library 😄

Method Summary

Datasets

About

Please consider citing the following papers if you use SGP-Tools in your academic work 😄

@misc{JakkalaA23SP,
AUTHOR={Kalvik Jakkala and Srinivas Akella},
TITLE={Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces},
NOTE= {Preprint},
YEAR={2023},
URL={https://itskalvik.github.io/publication/sgp-sp},
}

@inproceedings{JakkalaA24IPP,
AUTHOR={Kalvik Jakkala and Srinivas Akella},
TITLE={Multi-Robot Informative Path Planning from Regression with Sparse Gaussian Processes},
booktitle={IEEE International Conference on Robotics and Automation, {ICRA}},
YEAR={2024},
PUBLISHER = {{IEEE}},
URL={https://itskalvik.github.io/publication/sgp-ipp}
}

Acknowledgements

This work was funded in part by the UNC Charlotte Office of Research and Economic Development and by NSF under Award Number IIP-1919233.

License

The SGP-Tools software suite is licensed under the terms of the Apache License 2.0. See LICENSE for more information.